Schlagwort-Archive: solar-powered node

Meshtastic Solar Motherboard

Auf Basis des RAKwireless Coremoduls RAK4631 und der Baseboards RAK19007 bzw. RAK19003 kann sehr einfach ein solar-betriebener IoT-Knoten aufgebaut werden. Ich hatte im Beitrag Solar-betriebener LoRa-Knoten einen solchen Knoten für das LoRaWAN vorgestellt.

Die einzusetzenden Baseboards unterstützen zwar eine einfache Stromversorgung über ein Solarpanel, doch sollte wegen der höheren Stromaufnahme eines Meshtastic-Knotens die vom Solarpanel bereitgestellte Energie mit einem Solar-MPPT-Batteryloader optimal genutzt werden.

MPPT steht für „Maximum Power Point Tracking“ und bezeichnet die Nachführung des Punktes maximaler Leistung einer Solarzelle.

Vlastimil Slintak hat diesen Ansatz verfolgt und einen Solar-MPPT-Batteryloader für Li-Ion-, LiFePo4- oder LTO-Batterien mit einem RAK4630-Modul zu einem Meshtastic Solar Motherboard kombiniert (https://uart.cz/en/2534/solar-mppt-charger-for-meshtastic/). Das Board mit den Maßen 70 × 43 mm ermöglicht die Verwendung eines jeden Solarpanels mit einer Spannung von 7 bis 30 V und jeder Batterie mit einer Nennspannung von weniger als 5,6 V.

Unterstützt werden:

  • 1S Li-Ion und Li-Po-Batterie (Standard- und allgemein erhältliche Akkus, wahrscheinlich die am häufigsten verwendeten unter Meshtastic-Enthusiasten),
  • 1S LiFePo4 (gängige Batterien in Solaranlagen mit langer Lebensdauer und einer Kapazität von mehr als 100 Ah) oder
  • 1S und 2S Lithiumtitanatoxid, auch LTO genannt (Batterien, die auch im Winter bei Temperaturen unter -10 °C entladen und geladen werden können).

Das Board verfügt über Qwiic-Anschlüsse (SparkFun Qwiic bzw. Adafruit STEMMA) für I2C-Sensoren (z. B. Temperatur-, Feuchtigkeits- und Druckmessungen oder alle anderen von der Meshtastic-Firmware unterstützten Sensoren), einen USB-C-Anschluss (dieser wird nur für die Kommunikation verwendet, er ist nicht für die Stromversorgung der Platine vorgesehen) und eine RESET-Taste für einfache FW-Updates, zwei Signal-LEDs, einfachen Zugriff auf UART RX- und TX-Signale und eine SWD- Schnittstelle (Serial Wire Debug) für die FW-Entwicklung/das Debuggen und schließlich drei Befestigungslöcher für M3-Schrauben zur bequemen Montage der Leiterplatte in einer Box.

Hier ist das umfangreiche Datenblatt für das Meshtastic Solar Motherboard (https://pcb.uart.cz/datasheets/solar-node-revD-datasheet.pdf).

Sie finden das Meshtastic Solar Motherboard von Vlastimil im Lectronz-Onlineshop (https://lectronz.com/stores/uartcz).


2025-04-25/CK

Solar-betriebener Meshtastic-Knoten

Der im Blogpost Meshtastic – Erfassen, Versand und Visualisierung von Messwerten beschriebene Meshtastic-Knoten wird hier bezüglich der Stromaufnahme unter verschiedenen Umgebungsbedingungen untersucht.

Da das externe Sensormodul hinsichtlich der Stromaufnahme (noch) nicht optimiert ist, starte ich den Solartest ohne diesem Modul.

Eine Überschlagsrechnung zeigt, dass mit einem 5 V/3 W-Solarpanel und einem Li-Ion-Akku 18650 der Strombedarf gedeckt sein könnte. Die theoretische Laufzeit von ca. 3 Tagen ist für die Überbrückung einer Dunkelflaute allerdings knapp bemessen.

Weiterlesen

Solarbetriebener Meshtastic Client

Im Blockbeitrag Solarbetriebener LoRa-Knoten habe ich einen auf WisBlock-Komponenten (RAK4631) basierenden LoRaWAN-Knoten vorgestellt. Eine 5 W Solarzelle lädt bei genügend Sonnenlicht einen 18650-LiPo-Akku auf. Die Spannungsversorgung des LoRa-Knotens erfolgt durch die höhere der beiden Spannungen.

Der gleichen Hardware habe ich die Meshtastic Firmware aufgespielt und starte einen Versuch zum autonomen Betrieb dieser Konfiguration. Ein Meshtastic Client bietet insofern ungünstige Bedingungen, als er praktisch im Dauerbetrieb läuft und nicht einfach in einen Deep Sleep versetzt werden kann.

Der Test beginnt mit einem mittelmäßig aufgeladenen LiPo-Akku, dessen Entladung am ersten Tag durch reichlich zwei Stunden Sonnenschein wieder ausgeglichen wurde. Am zweiten Tag war die Sonnenscheindauer etwas länger, die Sonneneinstrahlung aber weniger intensiv, wodurch die Entladung nicht kompensiert wurde. Dieser Vorgang setzt sich bis zum Aussetzen der Kommunikation fort.

Die folgenden Screenshots des Ladezustands und die Tabelle zeigen die konkreten Werte.

Erste 48 h Testzyklus
Letzte 24 h Testzyklus
StatusDaumUhrzeitBatteriespannungLadezustand
Start Entladung15.12.202419:563.59 V36 %
Start Solarnachladung16.12.202411:163.40 V18 %
Ende Solarnachladung16.12.202413:563.63 V40 %
Start Solarnachladung17.12.202411:133.36 V14 %
Ende Solarnachladung 17.12.202415:203.54 V31 %
Start Solarnachladung18.12.202413:553.32 V11 %
Ende Solarnachladung18.12.202414:083.23 V6 %
Ende der Kommunikation18.12.202415:443.05 V0 %

Aus dem Verhalten der Batterienachladung an zwei eher sonnigen Tagen im Dezember 2024 und den darauf folgenden weniger sonnigen Tagen zeigt sich, dass ein zuverlässiger Dauerbetrieb bei normalen Bedingungen kaum möglich sein dürfte.

In meinem Meshtastic eBook befasst sich ein Abschnitt mit Batterietypen und ein anderer mit der Optimierung der Solar-Spannungsversorgung. Für einen autonom zu betreibenden Meshtastic-Knoten sind das durchaus komplexe Themen.

Ein MPPT-Laderegler sollte eine deutliche Verbesserung des Ladevorgangs bringen. Auch die eingesetzte Batterietechnologie spielt eine Rolle für das Gesamtverhalten.

Inwieweit ein MPPT-Laderegler mit dem gleichen Solarpanel und einem Li-Po Akku hier bessere Resultate zulässt, werde ich untersuchen. Eine Vergrößerung des Solarpanels bleibt dann immer noch als Option.

Einen Waveshare Solar Power Manager (B), der einen Li-Po-Akku mit 10’000 mAh und Solarpanels mit 6 V ~ 24 V unterstützt, habe ich bestellt.

Waveshare Solar Power Manager (B)

2024-12-19/CK

Solar-Powered LoRa Node

A Modular, Compact, and Versatile IoT Solution

https://www.elektormagazine.com/magazine/elektor-354/63204

This article in the newest Elektor Magazine will introduce you to a battery-powered Internet of Things (IoT) node, buffered by a solar cell, with LoRaWAN connectivity. We focus on the power supply and monitoring the different voltages remotely via Bluetooth and LoRa.