Zur Embedded World stellte RAKwireless neue Wisblock Module vor. Die bestehenden Anzeigemöglichkeiten werden durch das RAK14014 TFT Display erweitert. Das RAK14014 ist ein 240×320 Pixel Farb-TFT Display mit Touchscreen und Hintergrundbeleuchtung. Das TFT ist verbunden mit einem Schutzglas, das auf die Unify-Gehäuse abgestimmt ist.
MINT steht als Synonym für Mathematik, Informatik, Naturwissenschaft und Technik. Die MINT-Fachbereiche bilden den zentralen wirtschaftlichen Innovationssektor. Die Digitalisierung ist im Kern die Grundlage für unser aller Zukunft.
In der IoT2-Werkstatt ist kürzlich das folgende Büchlein erschienen, wo die dortigen MINT-Aktivitäten sehr anschaulich beschrieben werden.
Das vorliegende Büchlein zeigt, wie MINT die Resilienz der Gesellschaft stärken kann. Als herausragende Anwendung hat sich dabei die auf dem Octopus-Mikrocontroller basierende IoT-CO2-Ampel erwiesen. Hunderte Schulen in Deutschland haben zu Beginn der Pandemie ihre Ampeln gemeinsam selbst gebaut. In tausenden Klassenräumen helfen sie seither beim nachhaltigen Lüften.
Angesichts weltweit weiter zu erwartender Infektionen gibt es aber erheblichen Nachholbedarf bei der Raumluftqualität. Da ist es schon etwas deutlich Anderes, ob ein gekaufter Sensor an der Wand hängt, oder ob ein selbstgebautes und durchschautes System an die MINT-Hintergründe der Lüftungsregeln erinnert.
Neben der Messung der Raumluftqualität sind im Büchlein Anwendungen zur Messung des Energieverbrauchs, zum Balkonkraftwerk (genehmigungsfreie Stecker-Solaranlage) und zur Messung des Starkregenpegels zu finden.
Hier findet sich die Präsentation des offiziellen Teils des Abends.
Gleich zu Beginn des regulären Teils berichtete Martina Kuhaupt vom DZZ über das, was in Zeitz, dem Digitalisierungszentrum und dem LoRa-Park seit der letzten Vorstellung geschehen ist.
Im Anschluss stellte Claus Kühnel sein Buch „LoRaWAN-Knoten im IoT“ vor. Es war eine spannende Geschichte wie aus einen kleinen Projekt inzwischen ein Buch wurde, welches in deutscher und englischer Sprache verfügbar ist. [Präsentation]
Danach erzählte uns Oliver Brandmüller von der Deutschen Bahn über die LoRa-Aktivitäten der seines Arbeitgebers. Es war schon recht beeindruckend, was dort in den vergangenen Jahren so entwickelt wurde und was als nächstes noch weiter geplant ist. Perspektivisch wird es auf den Bahnhöfem in immer mehr Städten Deutschlands Gateways geben, welche die empfangenen Datenpakete via Paketbroker an TTN weiterleiten und damit zur Abdeckung weiterer Regionen für das Communitynetzwerk TTN beitragen werden. [Präsentation]
Zuletzt stellte uns Stephan Preuss von get-optimo die Plattform seines Startups vor. Diese Plattform kann das Entwickeln von Usecases sowie die Vernetzung aller an dieser Entwicklung unterstützen. Stephan bot der Community die testweise Nutzung der Plattform an. Da es jedoch im Communityumfeld recht selten Auftraggeber-Auftragnehmerbeziehungen gibt im Rahmen derer die Usecases entwickelt werden, geht die Communityrealität etwas am Konzept der Plattform vorbei. [Präsentation]
Für mich war es ein sehr interessanter Abend – Danke für die Einladung.
In der Vergangenheit habe ich mich mehrfach mit der Überwachung der Luftqualität in Innenräumen befasst.
Die Informationen zur Bewertung der Luftqualität habe ich in einer Sammlung von Beiträgen zusammengestellt, die Ihnen gerade in einer Zeit erhöhter Belastung durch über Aerosole übertragene Infektionskrankheiten den Zusammenhang von CO2-Konzentration und Infektionsrisiko vor Augen führen soll.
Geeignete Sensorik stelle ich Ihnen vor und vergleiche deren Resultate. Praktische Anwendungsbeispiele runden den messtechnischen Teil ab.
Mit dem hier vermittelten Wissen und den zur Verfügung stehenden Elektronikkomponenten (Sensoren, Mikrocontroller) kann der Maker leicht eigene Lösungen zur Überwachung der Luftqualität implementieren.
Wegen der starken Verbreitung in der Maker-Szene habe ich hier auf Arduino oder Arduino-kompatible Mikrocontroller gesetzt.
Der M5Stamp-C3U basiert auf dem 32-Bit-RISC-V-Mikrocontroller ESP32-C3 – RV32IMC von Espressif und arbeitet mit einer maximalen Taktfrequenz von 160 MHz.
Ein ESP32-C3-DEVKITM-1 und ein ESP32-C3-DEVKITC02 hatte ich zu je € 9.65 bei Schukat bestellt und im Juli 2021 getestet. Siehe hierzu meinen Blogbeitrag ESP32-C3 – RV32IMC von Espressif. Für $ 5.90 erhalten Sie die M5Stamp-C3U im M5Stack Store.
Interessant sind die verschiedenen Bestückungsvarianten (SMT, DIP, Flywire, Grove Interface), die durch das hoch-temperatur-beständige Plastikgehäuse gegeben sind. Mit diesem Gehäuse können die internen Komponenten einschliesslich der 3D-Antenne sehr gut geschützt werden.
Im Norden Deutschlands wird man schnell feststellen, dass die Abdeckung mit Gateways für TTS mit der in den Ballungszentren in der Mitte und im Süden Deutschlands in keiner Weise vergleichbar ist.
Was bleibt?
Entweder folgt man dem LoRaWAN-Community-Gedanken und nimmt ein eigenes Gateway in Betrieb und unterstützt die Community in Schwerin oder Rostock oder nutzt mit NB-IoT eine LPWAN-Alternative.
LoRaWAN ist eine verbreitete und unter bestimmten Bedingungen auch für jeden zugängliche Möglichkeit zur Übermittlung von Daten eines IoT-Knotens. Aber, LoRaWAN ist eine Möglichkeit und es gibt weitere, wie NB-IoT, Sigfox, LTE-M, Weightless, Symphony Link u.a.
Von den verfügbaren Technologien setzen sich LoRaWAN und NB-IoT deutlich ab. In der geschilderten Situation ist es also angebracht, sich auch mit NB-IoT auseinander zu setzen, um die Funktionen und Unterschiede der beiden Technologien zu verstehen.
LPWAN-Technologie NB-IoT
NB-IoT dient dem Senden und Empfangen kleiner Datenmengen (einige zehn oder hundert Bytes pro Tag), die von IoT-Geräten mit geringer Zahl an generierten Daten stammen. NB-IoT ist wie LoRaWAN nachrichtenbasiert, jedoch mit einer viel schnelleren Modulationsrate, die viel mehr Daten verarbeiten kann als LoRa.
NB-IoT ist für einfache Geräte gedacht, die über ein lizenziertes Frequenzspektrum eine Verbindung zu einem Betreibernetzwerk herstellen müssen. Da NB-IoT-Geräte auf 4G (LTE)-Abdeckung angewiesen sind, profitieren sie von einer sehr guten Abdeckung und funktionieren in Innenräumen und in dichten städtischen Gebieten sehr gut. NB-IoT hat schnellere Reaktionszeiten als LoRaWAN und kann eine bessere Servicequalität garantieren.
Eine Gegenüberstellung der Hauptmerkmale beider LPWAN-Technologien zeigt die folgende Tabelle [1].
Technology Parameters
LoRaWAN
NB-IoT
Bandwidth
125 kHz
180 kHz
Coverage
165 dB
164 dB
Battery Life
15+ years
10+ years
Peak Current
32 mA
120 mA
Sleep Current
1 µA
5 µA
Throughput
50 Kbps
60 Kbps
Latency
Device Class Dependent
<10 s
Security
AES 128 bit
3GPP (128 to 256 bit)
Geolocation
Yes (TDOA)
Yes (In 3GPP Rel 14)
Cost Efficiency
High
Medium
LoRaWAN vs. NB-IoT [1]
Da NB-IoT auf 4G (LTE) angewiesen ist, ist der Anwender von NB-IoT auch an einen entsprechenden Provider gebunden, der die Netzabdeckung absichert. Für die deutsche Telekom und Vodafone sieht die Netzabdeckung für NB-IoT in Deutschland sehr gut aus, wenn es da auch noch Unterschiede gibt. Die folgende Abbildung zeigt die NB-IoT-Netzabdeckung der Telekom für Deutschland.
NB-IoT-Netzabdeckung der Telekom für Deutschland
Die NB-IoT-Abdeckung von Vodafone für Deutschland sieht ähnlich aus. Wenn Sie den angegebenen Links folgen, können Sie detaillierte Information für Ihre Umgebung erhalten.
Für die DACH-Region (D, A und CH) sind damit providerseitig alle Voraussetzungen für den Einsatz von NB-IoT gegeben. Roaming-Vereinbarungen, die beispielsweise von der Telekom mit zahlreichen Nachbarstaaten getroffen worden sind, ermöglichen einen länderübergreifenden Einsatz von NB-IoT.
Die für den NB-IoT-Zugriff erforderlichen SIM-Karten können von verschiedenen Anbietern bezogen werden. Ich verwende hier 1NCE (1nce.com) . Die 1NCE IoT Flat Rate ist ein Pre-Paid Modell für IoT Geräte.
Wettersensor mit NB-IoT
Für den Test von NB-IoT habe ich einen einfachen Wettersensor auf Basis einer M5Stack AtomDTU NB-IoT mit einem Atom Lite als Controller und einer M5Stack ENV.II Unit als Sensor aufgebaut.
Die ENV.II Unit umfasst einen SHT30 Sensor zur Messung von Temperatur und Luftfeuchtigkeit und einen BMP280 zur Messung von Temperatur und barometrischem Druck. Beide Komponenten werden über die Grove-Ports mit dem I2C-Bus miteinander verbunden.
Das über die Arduino IDE erstellte Anwendungsprogramm erfasst die Sensordaten und versendet diese über NB-IoT an einen MQTT-Broker. Die Basis für das Anwendungsprogramm ist auf GitHub unter der URL https://github.com/m5stack/ATOM_DTU_NB/tree/master/examples/MQTT.
Die Beschreibung der AT-Kommandos für das im AtomDTU NB-IoT eingesetzte SIMCom SIM7020 Modul finden Sie unter [2] und [3].
Ich verwendet hier den HiveMQ Public MQTT Broker und greife auf die Daten über einen Webclient zu.
Die Messwerte für Temperatur, relative Luftfeuchtigkeit und barometrischen Druck werden abgefragt und einer nach dem anderen im Minutentakt versendet (published).
Im Webclient habe ich den Topic atomdtu/# abonniert (subscribed) und sehe damit jede versendete Nachricht incl. deren Time Stamp.
Haben Sie keinen WLAN-Zugang ins Internet und zum MQTT-Broker, dann kann ein mobiler Zugriff vom Smartphone (hier über 4G) von einer MQTT Dashboard App aus erfolgen.
Elektromagnetische Anzeigetechnologien ermöglichen die Anzeige von Informationen ohne Strom und deren Sichtbarkeit bei sehr unterschiedlichen Lichtverhältnissen.
Ich möchte hier nicht auf die eher betagten Anzeigen im Flughafen eingehen, sondern speziell auf Statusanzeigen (Flip Dot Status Indicators) eingehen, die sich auf Grund des nur während des Umschaltens auftretenden Strombedarfs auch für IoT-Anwendungen eignen.
Den hier eingesetzten Flip Dot Status Indikator hat mir die Fa. Alfa-Zeta Ltd. aus Łódź (PL) zur Verfügung gestellt.
Jede Scheibe enthält einen Permanentmagneten, der mit einem Elektromagneten zusammenwirkt. Ein kurzer Stromimpuls aktiviert eine Umkehr des im Elektromagneten induzierten Magnetfelds, die bestimmt, ob das Segment freigelegt (set) oder zurückgezogen (reset) wird.
Die für die Ansteuerung des Flip Dots notwendigen technischen Daten sind in der folgenden Tabelle zusammengestellt:
Merkmal
Wert
Pulsdauer Schaltvorgang
1,5 ms
Strom für Schaltvorgang (min)
250 mA
Strom nach erfolgtem Schaltvorgang
0
Spannung
4,5 V – 125 V
Spulenwiderstand (@20°C)
12 Ohm
Technische Spezifikation Flip Dot Status Indikator
Beim hier verwendeten, zweipoligen Flip Dot wird das Umschalten des Status durch Richtungsänderung des kurzen Stromimpulses durch die Magnetisierungsspule erreicht. Über eine H-Brücke kann die Umschaltung der Stromrichtung im einfachsten Fall vorgenommen werden.
Ansteuerung Flip Dot Status Indikator
Durch Verwendung eines H-Brücken-Moduls ergibt sich die folgende Ansteuerung durch einen Mikrocontroller (hier ein Arduino Uno).
Die beiden Steuerausgänge müssen für einen Stromimpuls immer gegeneinander invertierte Signale führen, wie das leicht am einfachen Ansteuerprogramm zu erkennen ist. Das Programm selbst finden Sie wieder auf Github unter https://github.com/ckuehnel/Arduino2020/tree/master/Generic/FlipDot.
Ansteuerung Flip Dot Status Indicator über H-Brücke