Archiv der Kategorie: Hardware

Vermittlung digitaler Inhalte in der Schule

Schon heute setzen wir uns mit zunehmender Tendenz mit automatisierten Abläufen, Algorithmen und vernetzten Gegenständen im Alltag auseinander. Künstliche Intelligenz wird Prozesse unterstützen und möglicherweise auch irgendwann autonom übernehmen.

Auf diese Entwicklungen vorbereitet zu sein, um sie zu beherrschen, zu gestalten und weiter zu entwickeln bedarf es mehr als einen IT-Grundkurs im Gymnasium oder Studium. Wichtig ist es, die Chance zu haben, in diese Welt und das damit verbundene Denken hineinzuwachsen.

In einigen Ländern wurde das frühzeitig erkannt und durch entsprechende Initiativen gefördert. Die Idee ist, jedes Kind zu inspirieren, seine digitale Zukunft zu gestalten und die Maker-Bewegung in den Unterricht zu bringen.

Im Schweizer Lehrplan 21 wird der heutigen Lebenswelt von Kindern und Jugendlichen entsprochen, die „durchdrungen (ist) von traditionellen und digitalen Medien sowie von Werkzeugen und Geräten, die auf Informations- und Kommunikationstechnologien basieren und die durch ihre Omnipräsenz neue Handlungsmöglichkeiten und neue soziale Realitäten schaffen“ (https://v-fe.lehrplan.ch/index.php?code=e|10|2). Abgestimmt mit dem Lehrplan 21 steht mit der Oxocard ein mit WiFi ausgestatteter Computer zur Verfügung, der auch bereits über den Browser programmiert werden kann. Auch in Deutschland und Grossbritannien werden solche Aktivitäten durch Hard- und Software für den Einsatz in der Schule unterstützt.

„Unser Anspruch ist, dass jeder Schüler und jede Schülerin in der dritten Klasse in Deutschland so ein Ding in die Hände bekommt“, sagt Stephan Noller, einer der Gesellschafter von Calliope. „Es soll nicht irgendein Leuchtturmprojekt in Berlin-Wedding werden, sondern wir wollen in die Fläche – und zwar jedes Jahr von Neuem.“

Ob man mit dem Calliope mini die vielleicht größtmögliche Umwälzung des deutschen Schulsystems in der Hand hält, wie Patrick Beuth in der Zeit im Beitrag „Dieser Computer kann unser Schulsystem revolutionieren“(http://www.zeit.de/digital/internet/2016-10/calliope-mikrocontroller-grundschule-dritte-klasse) schreibt, kann ich nicht beurteilen.

So unterschiedlich die Angebote sind, eines haben sie gemeinsam: Sie werden von Menschen organisiert, die mit großer Begeisterung ihr Wissen rund um Programmierung und digitale Themen an Kinder und Jugendliche weitergeben. Bei den Machern um BBC micro:bit, Calliope mini und Oxocard ist diese Begeisterung zu spüren.

Dass solche Projekte, wie so oft, nicht widerstandsarm umsetzbar sind, zeigen Diskussionen wie sie im Interview „An Calliope scheiden sich die Geister“ (https://www.deutschlandfunk.de/minicomputer-im-klassenzimmer-an-calliope-scheiden-sich-die.680.de.html?dram:article_id=399302) aufgeworfen werden.

Ich möchte mich hier auf den technischen Bereich beschränken. Für ideologische Auseinandersetzungen sind andere besser geeignet.

Die folgende Tabelle zeigt eine Gegenüberstellung der technischen Merkmale der drei hier betrachteten Mikrocontrollerboards.

Mikrocontroller
Board
BBC micro:bitCalliope miniOxocard
HerkunftUKDCH
HauptmerkmaleNordic nRF52833, BLE, Radio
Motion Sensor (ST LSM303AGR)
5×5 LED Matrix Display (rot)
2 Taster
19 GPIO
Piezo-Lautsprecher
MEMS Mikrofon
USB Micro B Anschluss
(Programmierung und Stromversorgung)
JST Batterieanschluss (3.3V)
Temperatursensor (on-chip NRF52)
Nordic nRF51822, BLE, Radio
Motion Sensor (Bosch BMX055)
5×5 LED Matrix Display (rot)
DC Motortreiber (TI DRV8837)
Piezo-Lautsprecher
MEMS Mikrofon
Neopixel (WS2812b)
2 Taster
8-11 GPIOs, PWM, 4 x analog
UART + SPI + I2C
USB Micro B Anschluss
(Programmierung und Stromversorgung)
JST Batterieanschluss (3.3V)
2 Grove Stecker (I2C + Seriell/Analog)
Espressif ESP32, BLE, WiFi
Motion Sensor (ST LIS3DE)
8×8 Neopixel Matrix
Kopfhörerbuchse für 8bit-Audioausgabe (mono)
Mikrofon (PDM)
NeoPixel Data-Out
6 Taster
6 GPIOs
UART + SPI + I2C
USB Micro B Anschluss
(Programmierung und Stromversorgung)
LiPo-Akku
Anschluss für Grove I2C-Hub
Temperatursensor (on-chip LIS3DE)

Programmier-
umgebungen
MakeCode, MicroPython,
JavaScript
MakeCode, Swift,
abbozza! Calliope (basiert auf Blockly),
C/C++ (Segger), MicropPython
Blockly, Oxoscript,
Arduino (C/C++), MicroPython. 
BBC micro:bit, Calliope mini, Oxocard – im Vergleich

Wie aus den Hauptmerkmalen abzuleiten ist, stellen alle drei Boards eine vergleichbare Infrastruktur bereit. Auf markante Unterschiede will ich im Folgenden eingehen. Eine Betrachtung der Ausgangsversionen von BBC micro:bit und Calliope mini hatte ich in einer früheren Veröffentlichung (https://www.elektroniknet.de/embedded/hardware/mikrocontroller-nicht-nur-fuer-die-schule.150415.html) bereits vorgenommen.

Herausstechendes Merkmal beim BBC micro:bit ist seine an der Unterkante des Boards befindliche als Goldfinger bezeichnete Anschlussleiste. Hier können zahlreiche Erweiterungsboard direkt angeschlossen werden. Einen guten Überblick zu diesen Erweiterungen finden Sie unter https://shop.pimoroni.com/collections/micro-bit-uk.

BBC mirco:bit v2

Beim Calliope mini wollte man den Goldfinger nicht übernehmen, da wegen der viel zu eng liegenden Kontakte im Schuleinsatz mit ständigen Kurzschlüssen durch die Schüler gerechnet werden müsste. Es wurden auf dem Board Erweiterungen, wie RGB-LED (Neopixel) und Motortreiber (H-Brücke) u.a., vorgesehen. Zusätzlich stellen die beiden Grove-Connectoren einen I2C-Bus, einen UART-Anschluss sowie einen analogen Eingang zur Kontaktierung von Sensoren oder Aktoren des umfangreichen Grove-Systems zur Verfügung. Eine gute Übersicht zum Grove-System bietet ein Grove Wiki von Seeedstudio (https://wiki.seeedstudio.com/Grove_System/).

Calliope mini v2

Die Oxocard geht einen etwas anderen Weg. Die elektronischen Interna sind gut verpackt in einem Kartongehäuse. Durch den Einsatz eines ESP-32 steht neben BLE auch WiFi zur Verfügung, wodurch Internet-Konnektivität gegeben ist. Durch diese Option ist es möglich IoT-Projekte zu realisieren. Der LiPo-Akku sorgt dann für einen gewissen Zeitraum sogar für autonome Einsatzmöglichkeiten ohne externe Spannungsversorgung.

Nach aussen hin stehen die sechs Taster und die 8×8 Neopixel Matrix für Experimente zur Verfügung. Durch die Verwendung der internen Sensoren kommt der Anwender erstmal vollkommen ohne elektrische Verbindungen nach aussen aus.

Kommuniziere Meldungen zwischen Oxocards, hol dir Daten aus dem Internet oder stelle dein Karte als Sensor anderen zur Verfügung. All das ist ohne Erweiterungen möglich.

Oxocard mit Kartongehäuse

Für den Maker von Interesse sind natürlich die Erweiterungsmöglichkeiten. Ergänzend zum Lieferumfang der Oxocard ist der OXOCARD i2C-Hub-Erweiterungsport verfügbar.

Lieferumfang Oxocard

Der Oxocard I2C Hub ist ein kleiner Bausatz, um der Oxocard relativ einfach das Anschliessen von beliebigen I2C-Grove- Komponenten zu ermöglichen. Mit diesen I2C-Hub können Sie die Oxocard mit zusätzlichen GROVE-kompatiblen Sensoren und Aktoren erweitern. Ausserdem kann über eine Buchsenleiste der SPI-Port nach aussen geführt werden.

SPI- und I2C-Bus an der Oxocard

Mit diesen Erweiterungsmöglichkeiten ist die Oxocard ein für den Schulbetrieb geeigneter, komplett ausgestatteter und erweiterbarer Mikrocontroller, der als einziger Internet-Zugriff aufweist.

Allen drei vorgestellten Boards gemeinsam ist neben der grafischen Programmierung in MakeCode resp. Blockly die Programmierung in MicroPython.

In meinem MicroPython Blog https://ckmicropython.wordpress.com sind MicroPython Programmbeispiele für die Oxocard zu finden.


2021-04-05/ck

Massgeschneidert für IoT Anwendungen

Espressif’s ESP32 ist aus IoT Anwendungen kaum noch wegzudenken. Geringe Stromaufnahme, eine leistungsfähige CPU und WiFi- bzw. BLE-Connectivity sind der Schlüssel für den Erfolg in diesem Bereich.

Eine Vielzahl dieser Anwendungen setzt das ESP-WROOM-32x-Modul von Espressiff ein.

Die ESP32-WROVER Serie besticht durch einige Modifikationen der ESP32-WROOM-32x-Module, die unter anderem ein zusätzliches 8-MB-SPI-PSRAM (Pseudo Static RAM) enthalten.

Das zusätzliche PSRAM kann für Geräte mit einem Display sehr nützlich sein. Wenn der Grafiktreiber einen Framebuffer verwendet, können so mehr Farben unterstützt werden.

Für das maschinelle Lernen bietet TensorFlow Lite alle Tools, die Sie zum Konvertieren und Ausführen von TensorFlow-Modellen auf Mobil-, Embedded- und IoT-Geräten benötigen. Genügend Speicher sollte aber vorhanden sein und den kann ein ESP32-Wrover nun bieten (siehe Tabelle).

Zu Tensorflow Lite auf dem ESP32 finden Sie weitere Informationen unter https://towardsdatascience.com/tensorflow-meet-the-esp32-3ac36d7f32c7

ModuleChipFlash, MBPSRAM, MBAnt.Dimensions, mm
ESP32-WROOM-32ESP32-D0WDQ64MIFA18 × 25.5 × 3.1
ESP32-WROOM-32DESP32-D0WD4, 8, or 16MIFA18 × 25.5 × 3.1
ESP32-WROOM-32UESP32-D0WD4, 8, or 16U.FL18 × 19.2 × 3.1
ESP32-SOLO-1ESP32-S0WD4MIFA18 × 25.5 × 3.1
ESP32-WROVER (PCB)ESP32-D0WDQ648MIFA18 × 31.4 × 3.3
ESP32-WROVER (IPEX)ESP32-D0WDQ648U.FL18 × 31.4 × 3.3
ESP32-WROVER-BESP32-D0WD4, 8, or 168MIFA18 × 31.4 × 3.3
ESP32-WROVER-IBESP32-D0WD4, 8, or 168U.FL18 × 31.4 × 3.3
Key characteristics of ESP32 Modules (https://docs.espressif.com/projects/esp-idf/en/latest/hw-reference/modules-and-boards.html)

Aus Fernost werden mittlerweile unterschiedlich ausgestattet Module mit ESP32-WROVER-B angeboten.

Ein gerade für IoT-Anwendungen optimal angepasstes Board wird mit dem ESP32 ePulse Dev Board von der Schweizer Firma Thingpulse angeboten.

Das Board ist für geringen Stromverbrauch und einen breiten Eingangsspannungsbereich optimiert. Weitere technische Aspekte finden Sie im Beitrag Designing the ESP32 Dev Board I always wanted.

Der VIN-Pin akzeptiert Spannungen zwischen 3.3 V und 12 V DC. Wenn sich das Board im Tiefschlaf befindet, verbraucht es nur zwischen 25 uA (bei 3.3 V) und 35 uA (bei 12 V). Die meisten ESP32-Boards verbrauchen etwa 100 – 130 uA.

Thingpulse bietet das Board für $ 16.90 an https://thingpulse.com/product/epulse-thingpulse-esp32-devboard/. Early Birds bekommen es noch für $ 12.70.

M5StickC Handheld Thermometer

Der M5StickC hat einen internen LiPo-Akku mit einer Kapazität von 80 mAh, der dem mobilen Einsatz dann doch gewisse Grenzen setzt. Bei meinen Experimenten zur Messung der Wassertemperatur hatte ich das zu berücksichtigen.

Kurz vor dem Jahresende 2019 kam Post aus Shenzen mit dem 18650C HAT, einem Batterieteil für den M5SticKC mit integriertem wiederaufladbaren LiPo-Akku 18650 mit einer Kapazität von 2000 mAh.

Das Batterieteil ist mit den Steckern der HAT-Serie ausgestattet, mit denen eine zuverlässige Verbindung zum M5StickC hergestellt werden kann. Die Unterseite ist mit einer USB-Ladeschnittstelle ausgestattet. Der USB-C-Anschluss des Batterieteils wird nur als Ladeschnittstelle verwendet und hat keine UART-Funktion. Auf der Rückseite des Batterieteils befinden sich zahlreiche Befestigungslöcher, die eine einfache Befestigung des gesamten Devices ermöglicht.

Handheld-Thermometer

Ich habe mit dem ENV Hat und dem M5StickC ein Handheld-Thermometer aufgebaut.

Über den BMP280 im ENV Hat werden Temperatur, relative Luftfeuchte und barometrischer Druck gemessen und im Sekundentakt auf dem M5StickC Display zur Anzeige gebracht.

Ich werde die Laufzeit einer Batterieladung in der Folge testen und hier berichten.

Überwachungsmassnahmen für den Batteriezustand sind nicht implementiert.

Neustart mit RISC-V

Damit sich eine neue Befehlssatzarchitektur für Controller oder Prozessoren durchsetzt, ist viel Aufwand erforderlich. Hardware-Hersteller müssen überzeugt, Entwicklungswerkzeuge müssen angepasst und Entwickler eingearbeitet werden. Entsprechend selten kommt ein neuer Befehlssatz auf den Markt. Aber RISC-V hat die Anfangshürden genommen und ist auf dem Weg zum Erfolg.

Unter dem Titel „Neustart mit RISC-V“ ist eine Beitrag zu RISC-V in der Zeitschrift Design & Elektronik Heft 1/2020 angekündigt.

Um die Performance des Maixduino, einem Arduino-kompatiblen Kendryte K210 Dual-Core 64-bit RISC-V Prozessor (RV64IMAFDC), gegenüber anderen Arduinos resp. Arduino-kompatiblen Mikrocontrollern zu vergleichen, habe ich zwei Benchmarks laufen lassen:

  • Sieve of Eratosthenes
  • CoreMark

Den ersten Benchmark habe ich zu Vergleichszwecken verwendet, da ich in der Vergangenheit damit bereits zahlreiche Tests vorgenommen habe.

Erweiterung der Arduino-Familie: ESP32 – wie gut ist es?
https://www.elektroniknet.de/design-elektronik/embedded/erweiterung-der-arduino-familie-esp32-wie-gut-ist-es-160294.html

Arduino32: Die jungen Wilden.
http://www.elektroniknet.de/embedded/arduino32-die-jungen-wilden-131502.html

CoreMark 1.0 hingegen ist ein vom EEMBC empfohlener Test und zudem an die Arduino-Umgebung angepasst (https://www.eembc.org/coremark/). Beide Benchmarks stehen unter https://github.com/ckuehnel/newArduino/tree/master/Maixduino zum Download zur Verfügung.

Die Resultate der beiden Benchmarks zeigen die folgenden Abbildungen. Verglichen wurden ein Arduino Due (AT91SAM3X8E@84 MHz), ein ESPduino-32 (ESP-Wroom-32@80 MHz) und ein Maixduino (Kendryte K210 RISC-V@400 MHz).

Tastaturerweiterung für M5StickC

Die Eingabemöglichkeiten über die zwei Tasten des M5StickC sind zwangsläufig limitiert. Möchte man eine voll ausgestatteten QWERTY-Tastatur für den M5StickC zur Verfügung haben, dann ist das CardKB HAT eine gute Möglichkeit.

Das CardKB HAT bietet auch Unterstützung für verschiedene Tastenkombinationen (Shift + Taste, Fn + Taste), mit denen praktisch viele verschiedene Tasten hinzugefügt werden können. Der Tastaturstatus wird mit einer RGB-LED angezeigt. Leider ist diese in der Ecke links oben nicht sehr günstig angeordnet, da sie durch den M5StickC abgedeckt wird. Das Keyboard meldet sich als I2C-Device mit der I2C-Adresse 0x5F.

Das die unten angezeigten Ausgaben erzeugende Testprogramm M5StickC_Keyboard.ino steht auf Github zum Download zur Verfügung. Die Tastatureingaben werden hier auf dem M5StickC-Display in grün dargestellt.

Teensy 4.0 – NXP’s i.MX RT1062 für alle

Teensy 4.0

Mit dem Teensy 4.0 steht ein kompaktes, aber dennoch handliches Boards mit NXP’s i.MX RT1062 (Arm Cortex-M7), einem sogenannten Crossover Processor (Kombination aus Mikrocontroller & Application Processor) , zur Evaluation bereit.

Die Ausstattungsliste im Datenblatt liest sich wie der Wunschzettel eines Embedded Entwicklers in der Vor-Weihnachtszeit. Ein Blick ins Datenblatt (https://www.nxp.com/part/MIMXRT1062CVL5A ) zeigt das.

Paul Stoffregen hat dafür gesorgt, dass der Teensy 4.0 auch als Arduino-kompatibler Mikrocontroller gehandhabt werden kann ( https://www.pjrc.com/teensy-4-0/ ) und somit der derzeit wohl leistungsfähigste Arduino zu einem sehr moderaten Preis von USD 19.95 zur Verfügung steht.

Den ersten Eindruck möchte ich mit den erweiterten Benchmarks aus meinem letzten Post https://ckblog2016.net/2019/08/19/maixduino/ beschließen.

Verglichen wurden eine Arduino Due (AT91SAM3X8E@ 84 MHz), eine ESPduino-32 (ESP-Wroom-32@80 MHz), ein Maixduino (Kendryte K210 RISC-V@400 MHz) und ein Teensy 4.0 ( i.MX RT1062@600 MHz). Hier sind die Resultate der beiden Benchmarks:

Benchmarkergebnisse Sieve of Erastothenes
Benchmarkergebnisse Coremark 1.0

Wie die beiden Benchmarks deutlich zeigen, hat Teensy 4.0 mit seinem mit 600 MHz getakteten i.MX RT1062 die Performance des Maixduino wesentlich überboten und kann als derzeit leistungsfähigster Arduino-kompatibler Mikrocontroller (oder eben als Crossover Processor) angesehen werden.

Maixduino – Arduino-kompatibel auf Basis RISC-V

Das ganze $23.90 kostende Sipeed Maixduino Kit for RISC-V AI + IoT ist seit geraume Zeit im Haus und hat auf die Inbetriebnahme gewartet. Ziel für mich war, das Board in der Arduino-Umgebung in Betrieb zu nehmen, um einen direkten Vergleich zu anderen Arduinos zu bekommen.

Zum Lieferumfang des Maixduino Kits gehören die folgenden Komponenten:

  • Maixduino Board (rechts)
  • 2.4 inch TFT Display (Mitte)
  • OV2640 camera module (links)
Komponenten des Maixduino Kits

Die Frontseite des Maixduino Boards zeigt an Hand der Buchsenleisten Kompatibilität zum Arduino-Formfaktor und die Rückseite zeigt in einem Blockdiagramm die zur Verfügung stehenden Ressourcen.

Neben der eigentlichen Inbetriebnahme in der Arduino IDE hat mich vor allem die zu erwartende Performance interessiert.

Um das Maixduino Board der Arduino IDE bekannt zu machen ist der folgende Eintrag in den Preferences vorzunehmen.

File -> Preferences: Eintrag der URL http://dl.sipeed.com/MAIX/Maixduino/package_Maixduino_k210_index.json unter Additional Boards Manager URLs. Einträge durch Komma separieren.

Im Boards Manager dann Maixduino (K210) selektieren und die folgenden Board Settings einstellen:

  • Board: Maixduino
  • Burn Tool Firmware: open-ec
  • Burn Baudrate: 1.5 M
  • Port: Serial port
  • Programmer: k-flash

Die Programmer Software k-flash wird vom Norton SONAR entfernt. Norton muss hier entsprechend eingerichtet resp. „entschärft“ werden. Die komplette Installation ist unter https://maixduino.sipeed.com/en/get_started/install.html beschrieben.

Um die Performance des Maixduino gegenüber anderen Arduinos resp. Arduino-kompatiblen Mikrocontrollern zu vergleichen, habe ich zwei Benchmarks laufen lassen:

  • Sieve of Eratosthenes
  • CoreMark

Den ersten Benchmark habe ich zu Vergleichszwecken verwendet, da ich in der Vergangenheit damit bereits zahlreiche Tests vorgenommen habe:

CoreMark 1.0 ist ein vom EEMBC empfohlener Test und zudem an die Arduino-Umgebung angepasst ( https://www.eembc.org/coremark/ ). Beide Benchmarks stehen unter https://github.com/ckuehnel/newArduino/tree/master/Maixduino zum Download zur Verfügung.

Hier nun die Resultate der beiden Benchmarks. Verglichen wurden eine Arduino Due (AT91SAM3X8E@ 84 MHz), eine ESPduino-32 (ESP-Wroom-32@80 MHz) und ein Maixduino (Kendryte K210 RISC-V@400 MHz):

Benchmarkergebnisse Sieve of Erastothenes
Benchmarkergebnisse Coremark 1.0

Gegenüber dem Arduino Due hatte der ESP-32 bereits eine deutliche Verbesserung der Performance gezeigt, die aber vom Maixduino noch wesentlich überboten wird. Damit dürfte der Maixduino derzeit der leistungsfähigste Arduino-kompatible Mikrocontroller sein.

Messung der Wassertemperatur

Auf meiner Website http://ckuehnel.ch/WetterVitte.html habe ich Temperaturangaben für Vitte auf der Insel Hiddensee.

Die Angaben aus dem Netz für die Wassertemperatur der Ostsee zeigen erhebliche Differenzen. Gelistet sind auf der Website Wassertemperaturen aus folgenden Quellen:

Mit dem im Post Rapid Prototyping mit M5Stack beschriebenen M5StickC und einem wasserdichten DS18B20-Temperatursensor mit einer Zuleitungslänge von 1 m habe ich ein portables Messgerät aufgebaut, mit dem die Wassertemperatur in 1 m Tiefe gemessen werden kann.

Die Messwerte für den Zeitraum 4.06. bis 13.06.2019 sind als Excel-Sheet abrufbar.

Gemessen wurde am Wasserrand nahe der Oberfläche und im Wasser (Strandnähe) bei 1 m Wassertiefe. Interessant sind für mich folgende Feststellungen:

  • die Messwerte schwanken viel stärker als vom BSH für Kloster angegeben
  • bei Ostwind sinkt die Wassertemperatur erheblich, was in den BSH Daten kaum sichtbar wird
  • bei Wellengang unterscheiden sich die Messwerte am Rand nur wenig von denen in 1 m Tiefe, was sich durch die Durchmischung des Wassers erklärt.
  • es erscheint dennoch recht schwierig, von solchen Messungen verallgemeinerungsfähige Aussagen abzuleiten
  • definierte Messbedingungen und die Einhaltung dieser sind unabdingbare Voraussetzungen für die Vergleichbarkeit solcher Messwerte
Lage der Messstelle

bpi:bit – Mehr Power im micro:bit Universum

In meinem Beitrag Mikrocontroller nicht nur für die Schule! (Design & Elektronik 01/2018, MF40-44) hatte ich BBC micro:bit und Calliope mini, beides für die Grundschul-Ausbildung konzipierte Mikrocontroller-Boards, vorgestellt und deren Erweiterungsmöglichkeiten betrachtet.

Befördert durch den Edge-Connector des BBC micro:bit werden mittlerweile zunehmend Peripherieerweiterungen für den BBC micro:bit angeboten, die diesen Controller auch für Maker interessant machen.

Einen Überblick über vorhandene Erweiterungen kann man sich beispielsweise bei Reichelt oder den folgenden Adressen holen:

Durch den im BBC micro:bit eingesetzten Mikrocontroller nRF51822 gerät man aber auch schnell an Grenzen. Will man beispielsweise seinen BBC micro:bit über WiFi vernetzen, dann ist dafür bereits ein Zusatzmodul erforderlich. Auch vom Speicherausbau her sind Grenzen gesetzt, die den Wunsch nach einem Mikrocontroller mit mehr Performance aufkommen lassen.

Mit dem bpi:bit des Banana-Pi Herstellers SinoVoip gibt es einen solchen Mikrocontroller auf Basis eines ESP32. Warum bei heise der bpi:bit als kuriose Kopie abgetan wird, ist für mich nur schwer nachvollziehbar. Die nachfolgende Tabelle zeigt die Merkmale von bpi:bit und micro:bit im Vergleich.

Wer bislang seinen BBC micro:bit bereits mit MicroPython oder der Arduino IDE programmiert hat, bekommt mit dem bpi:bit eine leistungsstarken Controller incl. WiFi für seine micro:bit Umgebung.

Nutzt man alle WS2812, dann kommt man um eine Fremdspeisung des Moduls nicht umhin, denn der Strombedarf übersteigt das, was ein USB-Anschluss zur Verfügung stellt.

Modulbpi:birmmicro:bit
CPUESP32 nRF51822
RAM520 KB256 KB
ROM448 KBN/A
Flash512 KB16 KB
WiFi 802,11 b/g/n/e/ich N/A
Bluetooth BT4.2 BR/EDR und BLE BLE
Sensoren2 Fototransistoren,
Thermistor,
MPU-2950
LED-Matrix,
On-Chip Temperatursensor,
LSM303GR
SummerSummerN/A
LEDs 25 Neopixel-LEDs (WS2812 ) 25 rote LEDs
GPIOEdge-Connector (Goldfinger)Edge-Connector (Goldfinger)
Tasten2 programmierbare Tasten 2 programmierbare Tasten
USBmicro-USB (UART)micro-USB
Software Webduino, Arduino,
MicroPython, Scratch X
Microsoft MakeCode, Arduino
MicroPython, Scratch X
Grösse5 x 5 cm5 x 4 cm

Maduino GPRS A6

Maduino GPRS A6 ist ein kostengünstiger Netzwerkknoten für das IoT. Der Hersteller
Makerfabs mit Sitz in Shenzhen, China hat auf dem Board einen Mikrocontroller ATmega 328, ein GRRS/GSM-Modul AI-Thinker A6, ein und ein integriertes Power-Management integriert.

Maduino GPRS A6

Das GRPS/GSM-Modul A6 unterstützt Quad-Band 850/900/1800/1900 MHz, das jedes GSM-Netzwerk abdeckt. In Verbindung mit einer SIM-Karte können Daten über GPRS übertragen werden. In meinem Post 2G für IoT Anwendungen hatte ich hierzu entsprechende Hinweise gegeben.

Das Modul kann über die Arduino IDE programmiert werden. Im Wiki sind Hinweise zur Inbetriebnahme und Programmierung enthalten. Hinweise zu einem Firmware Update sind hier zu finden.