Archiv der Kategorie: Sensor

bpi:bit – Mehr Power im micro:bit Universum

In meinem Beitrag Mikrocontroller nicht nur für die Schule! (Design & Elektronik 01/2018, MF40-44) hatte ich BBC micro:bit und Calliope mini, beides für die Grundschul-Ausbildung konzipierte Mikrocontroller-Boards, vorgestellt und deren Erweiterungsmöglichkeiten betrachtet.

Befördert durch den Edge-Connector des BBC micro:bit werden mittlerweile zunehmend Peripherieerweiterungen für den BBC micro:bit angeboten, die diesen Controller auch für Maker interessant machen.

Einen Überblick über vorhandene Erweiterungen kann man sich beispielsweise bei Reichelt oder den folgenden Adressen holen:

Durch den im BBC micro:bit eingesetzten Mikrocontroller nRF51822 gerät man aber auch schnell an Grenzen. Will man beispielsweise seinen BBC micro:bit über WiFi vernetzen, dann ist dafür bereits ein Zusatzmodul erforderlich. Auch vom Speicherausbau her sind Grenzen gesetzt, die den Wunsch nach einem Mikrocontroller mit mehr Performance aufkommen lassen.

Mit dem bpi:bit des Banana-Pi Herstellers SinoVoip gibt es einen solchen Mikrocontroller auf Basis eines ESP32. Warum bei heise der bpi:bit als kuriose Kopie abgetan wird, ist für mich nur schwer nachvollziehbar. Die nachfolgende Tabelle zeigt die Merkmale von bpi:bit und micro:bit im Vergleich.

Wer bislang seinen BBC micro:bit bereits mit MicroPython oder der Arduino IDE programmiert hat, bekommt mit dem bpi:bit eine leistungsstarken Controller incl. WiFi für seine micro:bit Umgebung.

Nutzt man alle WS2812, dann kommt man um eine Fremdspeisung des Moduls nicht umhin, denn der Strombedarf übersteigt das, was ein USB-Anschluss zur Verfügung stellt.

Modulbpi:birmmicro:bit
CPUESP32 nRF51822
RAM520 KB256 KB
ROM448 KBN/A
Flash512 KB16 KB
WiFi 802,11 b/g/n/e/ich N/A
Bluetooth BT4.2 BR/EDR und BLE BLE
Sensoren2 Fototransistoren,
Thermistor,
MPU-2950
LED-Matrix,
On-Chip Temperatursensor,
LSM303GR
SummerSummerN/A
LEDs 25 Neopixel-LEDs (WS2812 ) 25 rote LEDs
GPIOEdge-Connector (Goldfinger)Edge-Connector (Goldfinger)
Tasten2 programmierbare Tasten 2 programmierbare Tasten
USBmicro-USB (UART)micro-USB
Software Webduino, Arduino,
MicroPython, Scratch X
Microsoft MakeCode, Arduino
MicroPython, Scratch X
Grösse5 x 5 cm5 x 4 cm

Rapid Prototyping mit M5Stack

Wem es bislang an Baugruppen mit einem vernünftigen Gehäuse für die Entwicklung seiner Prototypen gemangelt hat, dem wird mit M5Stack Komponenten eine ansprechende Lösung angeboten.

Hier sind aus dem Angebot von M5Stack zwei Core Module:

Generell weisen beide Core Module einen ESP32 als Controller auf.

Die M5Stack Komponenten werden von zahlreichen Lieferanten angeboten und sind nicht nur bei Bezug aus Fernost sehr preiswert.

KomponenteAliexpress
M5Stack CoreUS$ 27.60
M5StickCUS$ 9.90
ENV UnitUS$ 3.20

Ich habe mit dem M5StickC erste Versuche unternommen, um seine Eignung für ein portables Messgerät zu testen. Der M5StickC ist mit einem 80 mAh LiPo-Akku ausgerüstet, was keine großen Akkulaufzeit erwarten lässt.

Der M5StickC ist mit einem Power System Management Chip AXP192 ausgestattet, der ein USB-kompatibles Ladegerät, DC-DC-Wandler, Low-Dropout-Linearregler, Spannungs- /Strom- /Temperaturüberwachung und Multi-Kanal 12-Bit ADC aufweist. Die Überwachung des Ladezustand des LiPo-Akkus kann über diesen Chip erfolgen.

Der ESP32 weist zwei I2C-Busse auf. Über den ersten werden die internen Chips AXP32 (0x34), BM8563 (0x51) und SH200Q (0x6C) angesteuert. Der zweite I2C-Bus ist am GROVE-Connector verfügbar.

Für einen ersten Test schließe ich eine ENV Unit über den GROVE-Connector an. Dieses Modul beinhaltet einen DHT12 (0x5C) und einem BMP280 (0x76) Sensor und erfasst damit Temperatur, relative Luftfeuchte und barometrischen Druck.

Das Programmbeispiel M5StickC_ENV.ino erfüllt zwei Aufgaben:

  1. Erfassen von Temperatur, relativer Luftfeuchte und barometrischem Druck über die angeschlossene ENV Unit.
  2. Erfassen von Batteriespannung und Ladestrom für den LiPo-Akku

Das Programmbeispiel ist auf Github abgelegt.

Ausgehend von einem voll aufgeladenen LiPo-Akku habe ich die USB-Verbindung getrennt und das angegebene Programmbeispiel batterie-betrieben laufen lassen. Es hat sich folgender Entladevorgang gezeigt.

Nach reichlich 60 Minuten war die Kapazität des Akkus erschöpft und das System schaltete sich ab. Die folgenden Bilder demonstrieren diesen Vorgang.

Beginn mit voll aufgeladenem LiPo-Akku
Entladung nach 10 Minuten
Erneutes Aufladen des LiPo-Akkus

Es soll an dieser Stelle noch ausdrücklich darauf hingewiesen werden, dass für den Betrieb hier keine WiFi-Verbindung genutzt wurde. Eine WiFi-Verbindung erhöht den Stromverbrauch deutlich, so dass wesentlich geringere Laufzeiten erwartet werden müssen.

Arduino-Sensorknoten

Auf der Basis eines ESP8266-Mikrocontrollers von Espressif hatte ich gezeigt, dass man einen WiFi-tauglichen IoT-Knoten zu sehr geringen Kosten (es waren 15 US$) aufbauen kann [Building an IoT Node for less than 15 $: NodeMCU & ESP8266].

Dass WiFi auf Grund der geringen Reichweite und des doch recht hohen Stromverbrauchs für einen batteriebetriebenen IoT-Knoten allerdings nur unter bestimmten Bedingungen geeignet ist, war auch durch eigene Untersuchungen gezeigt worden [IoT Button (5th)].

Der hier betrachtete Sensorknoten soll deshalb neben der Anbindung verschiedener Sensoren auch unterschiedliche Kommunikationsmöglichkeiten (WiFi, LoRaWAN, BLE, GSM) aufweisen. Damit wird es möglich werden, einen konkreten IoT-Sensor baukastenartig zusammenstellen.

Sensorknoten

Der Beitrag „Arduino-Sensorknoten“ wird im Sammelwerk „Messen, Steuern, Regeln mit IBM-kompatiblen PCs“ des Weka-Verlags veröffentlicht.

ISBN 978-3824549009

Die Programmbeispiele werden auf Github abgelegt und stehen zum Donload zur Verfügung.

Der erste Teil des Beitrags ist in der Ausgabe 170 im Februar 2019 erschienen.

Sonoff SC – Home Air Quality

Sonoff SC ist ein WiFi Luftgüte-Monitor für den Einsatz in Innenräumen.  Es werden Temperatur und Luftfeuchtigkeit, Lichtstärke, Feinstaub und Geräuschpegel erfasst. Die erfassten Daten werden direkt an die iOS/Android App EWeLink geschickt. Die Spannungsversorgung erfolgt über microUSB mit 5 V.

Sonoff SC ist „hacker-friendly“. Ein ATMega328p erfasst die Sensordaten mit Hilfe eines Arduino-Programms und ein ESP8266 dient der WiFi Kommunikation. Sonoff SC Schaltplan und Arduino Code sind im Wiki des Herstellers zu finden.

Wie die folgende Abbildung zeigt, besteht Sonoff SC aus Komponenten, die dem Maker weitgehend bekannt sein dürften.

sonoff_sc_2

Die Feinstaub-Belastung wird mit dem Sharp Dust Sensor GP2Y1010AU0F gemessen. Zur Messung von Temperatur und rel. Luftfeuchtigkeit dient der verbreitete DHT11 Sensor. Ein Elektret-Mikrofon erfasst die Umgebungsgeräusche und ein Fotowiderstand das Umgebungslicht.

Nach Installation der Android App eWeLink (für iOS gibt es eine entsprechende App) kann Sonoff Sc mit dieser App verbunden werden, die dann die erfassten Messgrößen auf dem Smartphone anzeigt.

Screenshot_20181201-143318_eWeLink

Sonoff Sc ist kein professionelles Messinstrument. Das zeigen schon die eingesetzten Low-Cost-Komponenten. Fast viel wichtiger ist es, diesen Sensor als Grundlage für eigene Experimente aufzufassen. Dazu sind alle Informationen, wie Schaltplan und Quellcode, offen gelegt und bei einem Preis von aktuell unter USD 20,- kann man da nichts falsch machen.

Website des Herstellers und Bezugsmöglichkeit: https://www.itead.cc/sonoff-sc.html
Weitere Bezugsmöglichkeiten: Aliexpress, Amazon

Thinger.io IoT Platform

Zahlreiche IoT Plattformen werben um die Gunst potentieller Kunden. Ich bin auf Thinger.io gestoßen, da von dieser Plattform mit dem ClimaStick auch eigene Hardware zur Erfassung von Umweltdaten angeboten wird. Hackster bietet auf dieser Basis auch gleich eine IoT Meteorological Station an.

Interessant ist diese Plattform allemal, da das Verbinden und Verwalten des eigenen IoT-Devices innerhalb weniger Minuten möglich ist.

Die folgenden Merkmale erscheinen mir besonders erwähnenswert:

  • Open Source
    Der Server kann in der eigenen Cloud (z.B. auf einem Raspberry Pi) installiert werden.
  • Flexible Hardware
    Arduino, ESP8266, ESP32, Raspberry Pi, Intel Edison – alles kann problemlos angeschlossen werden.
  • Cloud-Plattform
    Die gehostete Cloud-Infrastruktur mit einer benutzerfreundlichen Administrationskonsole ermöglicht Skalierbarkeit, Geschwindigkeit und Sicherheit.
  • Einfache Codierung
    Um ein Licht aus dem Internet einzuschalten oder einen Sensorwert zu lesen, ist eine einzige Codezeile auf der MCU erforderlich. Aber das ist nicht alles.
  • Für Maker
    Interessenten können sich für einen kostenlosen Account registrieren, um innerhalb weniger Minuten unter Nutzung der Cloud-Infrastruktur mit der Erstellung des ersten IoT-Projekts zu beginnen.

Im Bild zum Beitrag ist ein aus NodeMCU und DHT22 bestehendes IoT-Device mit der Cloud-Infrastruktur verbunden, die die erhobenen Daten visualisiert.

 

Kerlink Wirnet iFemtoCell – Kleines LoRaWAN Indoor Gateway mit großer Leistung

Der Ausbau landesweit erreichbarer Funknetze auf LoRa-Basis ist in einigen Ländern, wie der Schweiz (Swisscom), den Niederlanden (KPN) und Süd-Korea (SK Telecom), bereits erfolgreich umgesetzt. Andere Service Provider stellen ebenfalls die erforderliche Infrastruktur zur Verfügung. Neben kommerziellen Angeboten gibt es auch Services, die kostenfrei genutzt werden können.

Ein LoRaWAN-Gateway verbindet die über Funk kommunizierenden LoRaWAN-Nodes über das Internet mit einem LoRaWAN-Server. Weil hier in erster Linie Stabilität und Sicherheit gefordert sind, betrachte ich für diesen Einsatz nur kommerzielle LoRaWAN-Gateways.

Im Smartmakers Newsletter gehe ich speziell auf das Wirnet iFemtoCell LoRaWAN Gateway ein, welches perfekt für die Erweiterung in Gebäuden (zusätzliche Abdeckung in Gebäuden zur Verdichtung öffentlicher Verfügbarkeit und Kontinuität des Dienstes) oder für die private Abdeckung von Standorten geeignet ist, die kontinuierliche Konnektivität für ihre IoT-Anwendungen erfordern.

Betrachtet werden die folgenden Schwerpunkte

  • Unboxing
  • Inbetriebnahme
  • SSH-Verbindung
  • Firmware Update
  • Integration ins The Things Network (TTN)
  • Integration ins LORIOT-Netzwerk
  • Programmierung von Anwendungen auf dem Gateway

 

 

Mit phyWave-Modulen ins IoT

Daten von Sensoren im Netz oder zu Aktoren aus dem Netz verfügbar zu machen ist die Aufgabe von peripherienahen, meist drahtlos kommunizierenden IoT Devices.

Mit den phyWAVE© Modulen stellt Phytec mehrere solcher IoT Module her, die in eigene Anwendungen integriert werden können. Das phyWAVE-CC2650 ist eins der insgesamt drei von Phytec angebotenen phyWAVE Module. Kern ist das TI CC2650 SoC.

csm_phyWAVE-CC2650_95013e94a2

Das TI CC2650 SoC enthält einen 32-Bit-ARM Cortex-M3-Prozessor, der als Hauptprozessor mit 48 MHz betrieben wird. Der Sensor-Controller ist ideal für die Anbindung externer Sensoren und für die autonome Erfassung von analogen und digitalen Daten, während sich der Rest des Systems im Schlafmodus befinden kann.

Der BLE-Controller und der IEEE 802.15.4 MAC sind in ROM eingebettet und laufen teilweise auf einem separaten ARM Cortex-M0-Prozessor. Diese Architektur verbessert die Gesamtsystemleistung und den Stromverbrauch und stellt den Flash-Speicher für die Anwendung frei. Bluetooth- und ZigBee-Stacks sind kostenlos von TI erhältlich.

phyWAVE-CC26xx-block-diagram

Das phyNODE Sensor-Board stellt die Peripherie für den Betrieb des phyWAVE-CC2650 bereit. Am Rande des Boards sind eine Reihe von Sensoren angeordnet.

BLE hat die Möglichkeit, Daten in zwei verschiedenen Modes auszutauschen. Es werden der Advertising Mode und der Connected Mode unterschieden.

Nach einem Reset des phyWAVE Sensor-Boards befindet sich dieses im Advertising Mode und gibt seine MAC-Adresse aus. BLE Devices weisen eine einzigartige 6-Byte BLE- oder MAC-Adresse auf, die mit Hilfe des Kommandos sudo hcitool lescan vom als BLE Client dienenden Raspberry Pi abgefragt werden kann.

KommunikationNach dem Verbindungsaufbau werden alle Farben der RGB-LED nacheinander aktiviert bis schließlich am Ende die weiße LED eingeschaltet bleibt. Daran anschließend folgen Abfragen der einzelnen Sensoren bis hin zum Farbsensor und die Ausgabe der ermittelten Werte. Die Abfrage der Sensoren erfolgt in einer Endlosschleife.

Mit Hilfe eines Python-Scripts werden die übermittelten Sensordaten ausgewertet und einem Shell-Script zur Übermittlung an einen Server zur Visualisierung gesendet.

Der komplette Beitrag ist in der Design&Elektronik 10/2018 veröffentlicht. Der OnLine-Beitrag ist unter https://www.elektroniknet.de/design-elektronik/embedded/mit-phywave-modulen-ins-iot-158755.html zu finden. Die Software steht auf Github zum Download bereit.