Schlagwort-Archive: SensorHub

RAKwireless WisBlock

WisBlock is a modular system that easily implements a Low Power Wide Area Network (LPWAN) in your IoT solution. WisBlock accompanies your solution from rapid prototyping to mass production without the need to create new hardware modules for each step.

In the development phase, WisBlock modularity allows you to test different microcontrollers, sensors, communication technology, and IO options by changing modules with simple plug-in modules.
WisBlock industrial-grade modules can be used in mass production without the need to redesign prototypes.
Devices can be modified or repaired even once deployed with minimal waste and effort.

Where to buy international:

store.rakwireless.com

WisBlock ist ein modulares System, das auf einfache Weise ein Low Power Wide Area Network (LPWAN) in Ihre IoT-Lösung implementiert. WisBlock begleitet Ihre Lösung vom Rapid Prototyping bis zur Massenproduktion, ohne dass Sie für jeden Schritt neue Hardwaremodule erstellen müssen.

In der Entwicklungsphase können Sie dank der Modularität von WisBlock verschiedene Mikrocontroller, Sensoren, Kommunikationstechnologien und IO-Optionen testen, indem Sie Module gegen steckbare Module austauschen.
WisBlock-Module in Industriequalität können in der Massenproduktion eingesetzt werden, ohne dass Prototypen neu entwickelt werden müssen.
Die Geräte können auch nach dem Einsatz mit minimalem Aufwand modifiziert oder repariert werden.

Bezugsmöglichkeiten DACH:
D: https://iot-shop.de/
CH: https://www.bastelgarage.ch/


Futher Information: IoT Projects for Makers – 2nd Edition


2024-01-17/CK

IoT-Anwendungen einfach umgesetzt

Im Beitrag „WisBlock von RAKwireless – IoT-Anwendungen einfach umgesetzt“, veröffentlich in ELEKTRONIK 26/2023, S. 44-50 und im elektroniknet.de, wird gezeigt, wie mit WisBlock-Komponenten das Erstellen von IoT-Anwendungen vom Proof-of-Concept über das Prototyping bis hin zum Indus­trieprodukt unterstützt wird.

Der auf WisBlock aufbauende SensorHub stellt eine Ausprägung dieses Konzeptes dar und ermöglicht als Low-Code-System eine schnelle Umsetzung von IoT-Applikationen.

Die Messwerte der Messstation sind bspw. über diesen Public Link abrufbar.

SensorHub – Reduction of Power Consumption

The power supply of the SensorHub by an RAK9154 solar battery enables the autonomous operation of the complete measuring station. I describe this in my eBook SensorHub IoT Applications.

I had to close the chapter describing this application as follows: On sunny days, recharging the battery will hardly be a problem. On cloudy days, this balance looks less favorable, and it remains to be seen whether the weather conditions in my area offer sufficiently good conditions. It is, therefore, essential that the anticipated variant of the SensorHub promises to reduce power requirements further.

I have good news today. I got a new version of SensorHub and replaced the existing one. As you can see in the screenshot of the WisToolBox app, the hardware version changed from VF zu VH and the firmware from V1.1.79 to V1.2.6.

Existing Version of SensorHub
New Version of SensorHub

The following screenshot shows the behavior of the solar battery before and after the SensorHub replacement. The weather conditions are worse over the whole period.

You can see that before the replacement of the SensorHub the current consumption was about 50 mA in the phase of discharge. After the replacement, it is reduced significantly. The same behavior can be seen in the battery capacity curve. Before the replacement, the battery capacity dropped between 10% and 20% per day without recharging.

After the replacement, the discharge remains quite small. The current consumption was about 10 mA in the phase of discharge, and the battery capacity dropped by about 1%. The weather conditions were very bad therefore, the recharging was limited to a short time.

Now, I’m waiting for a sunny day so that the solar cell can charge the battery sufficiently to survive a period of bad weather without losing the connection.

The sun came out for a few hours, and the battery was charged. During this time, the solar cell delivers a considerable charging current.

We are on the right way, as you can see, after two days with a bit of sun.


2023-11-23/CK

SensorHub Measuring Station for Weather and Soil Parameters

The RK900-09 Weather Station described in my post RK900-09 Weather Station on SensorHub is the base for this SensorHub Measuring Station built by RK900-09 Weather Station, RK520-02 Soil Moisture Sensor, and RAK9154 Solar Battery. These components manufactured by RAKwireless build an autonomous working measuring station.

The measuring station was installed to test the acquisition of the measuring values via the connected sensors on the one hand and its behavior regarding battery operation in the darker season on the other hand.

The SensorHub periodically sends the measuring values to the TTN (CE) LNS. Datacake serves as a visualization platform, as the following screenshots show.

Datacake Dashboard

You can follow the acquired data on the Datacake dashboard via this Public Link.

Details of the implementation and required adaptions to the payload decoder for both platforms, as well as further hints to SensorHub, will be published in the eBook mentioned in the post RAKwireless IoT Applications.


2023-10-26/CK

RAKwireless IoT Applications

IoT applications usually require interdisciplinary collaboration between different disciplines during development and implementation.

With WisBlock, RAKwireless created a system accompanying the entire development path to the finished device using industrial-grade yet cost-effective components. Additionally, it offers the possibility to integrate components of prototyping systems from third-party providers into WisBlock.

With these systems, you can solve various tasks. Still, many steps are necessary to get a finished device, e.g., autonomy usable as a sensor node in harsh environments, which can be tedious.

True to the philosophy „IoT Made Easy,“ RAKwireless has ensured with WisBlock that this new solution is as simple as Click – Code – Connect!

I described the WisBlock ecosystem in an eBook titled „IoT-Projects for Makers: with WisBlock from RAKwireless • just Click, Code & Connect • to the finished device.“  

You can order this eBook at Amazon https://www.amazon.com/dp/B0C8VCF4DF.

Continuing this design philosophy, based on WisBlock, RAKwireless developed the RAK2560 WisNode SensorHub.

RAKwireless SensorHub is a modular ecosystem consisting of the main body and multiple pre-configured sensor probes. With pluggable, interchangeable probes and the option to add third-party sensors to the system, the Sensor Hub is a suitable and versatile solution platform for various IoT applications where environmental monitoring is needed outdoors.

The SensorHub can work battery-powered by non-rechargeable or solar-powered batteries or with an external power supply, depending on the application and deployment location.

For data transmission into Low-Power Wide-Area Network (LPWAN), LoRaWAN is available. Alternatively, NB-IoT can be used.

As a typical low-code system, it essentially requires configuration with the WisToolBox app from a cell phone.

I am currently working on applications of SensorHub in IoT using the example of measuring environmental data.

An eBook titled
„SensorHub IoT Applications:
• with WisNode SensorHub from RAKwireless
• just configure & connect
• to the finished application.“
is in preparation.

The planned release date is 11/15/2023, and pre-orders are available on Amazon.

You can order this eBook at Amazon https://www.amazon.com/dp/B0CKFNQX4D.


2023-10-05/CK

RK900-09 Weather Station on SensorHub

The Sensor Hub equipped with a Sensor Probe containing Temperature and Humidity Sensor RAK1901 and Pressure Sensor RAK1902 was used to measure environmental data (Link).

RAKwireless offers the RK900-09 Weather Station more precise equipment for measuring weather conditions.

MEMS sensors measure temperature, humidity, barometric pressure, and ultrasonic sensors wind speed and direction. You will find the technical data on the manufacturer’s website.

The SensorProbeIO associated with the RK900-09 connects the RS-485 output of the RK900-09 to the SensorHub interface.

The payload decoder provided by RAKwireless needed minor adaptations and is available on GitHub.

For visualization, I use Datacake again and get the following data output of this Weather Station.

Datacake Dashboard

Use this QR code or public link to get the actual weather data measured by RK900-09 Weather Station connected to SensorHub.


2023-09-26/CK

The first Sensor Hub application is running…

The Sensor Hub equipped with a Sensor Probe containing Temperature and Humidity Sensor RAK1901 and Pressure Sensor RAK1902 measures environmental data and sends them to TTS (CE). Datacake provides for the Visualization.

RAKwireless Sensor Hub is an excellent example of how low-code platforms help implement IoT solutions extremely fast.


2023-09-23/CK

Meeting mit RAKwireless

Am 19.09.2023 hatte ich die Gelegenheit den CEO von RAKwireless, Ken Yu, und zwei seiner Mitarbeiter in Zürich zu treffen.

Ich konnte einen Print-Version, des als eBook konzipierten Titels zu WisBlock übergeben.

Mit dem auf WisBlock aufsetzendem SensorHub wird es weitergehen.

Hier ist der Link zu Ken’s Statement auf LinkedIn: https://www.linkedin.com/feed/update/urn:li:activity:7110136146503888896?updateEntityUrn=urn%3Ali%3Afs_feedUpdate%3A%28V2%2Curn%3Ali%3Aactivity%3A7110136146503888896%29


2023-09-21/CK