Schlagwort-Archive: Arduino

ThingPulse gegründet

In der Maker-Szene bekannt sind Daniel “Squix” Eichhorn und Marcel “frightanic” Stör schon seit längerem.

Daniel ist in der ESP8266-Arduino-Community eine bekannte und respektierte Persönlichkeit. Er verkauft IoT-Kits und hat seit 2015 DIY-Projekte mit beeindruckender Geschwindigkeit realisiert.

Marcel ist seit Sommer 2015 einer von mehreren NodeMCU-Maintainers. NodeMCU ist eine Lua-Firmware für den ESP8266 / ESP32 WiFi SoC. Er hat auch einige Tools für die NodeMCU-Community beigesteuert: NodeMCU Cloud Builder, Docker NodeMCU Build, NodeMCU PyFlasher.

Die von Daniel und Marcel gegründete ThingPulse wird IoT-Hardware und -Software sowohl für Hersteller als auch für Verbraucher entwickeln, fördern und verkaufen. ThingPulse ist die Schnittstelle zwischen IoT-Komponenten und traditionellen Anwendungen. Mehr findet Ihr unter https://thingpulse.com/about/.

Ich wünsche an dieser Stelle einen guten Start und bin vom Erfolg schon heute überzeugt.

AVR Timer Interrupts Calculator

Arduino_Logo.svg
Timers for

  • ATmega328P used in Arduino Uno & Arduino Pro Mini
  • ATmega2560 used in Arduino Mega 2560 and
  • ATtiny85

are calculated in CTC mode. Select requested frequency, MCU and timer. Click Calculate. Copy result into the clipboard. Paste code into Arduino IDE. Ready. Click here for this easy to use tool.

It’s a good addition to my book Arduino Interrupts – Speed up your Arduino to be responsive.

Ledunia Benchmarks

Mit dem Beitrag Arduino32: Die jungen Wilden in der Zeitschrift DESIGN&ELEKTRONIK (Online-Version Teil 1Online Version Teil 2) hatte ich 32-Bit Arduinos vorgestellt und an Hand einfacher Benchmarks miteinander verglichen.

Der verbreitete #ESP8266 ist ebenfalls in die Arduino Umgebung integriert und die Verfügbarkeit von #Ledunia als High-End-ESP8266-Modul haben mich veranlasst, diese Tests mit Ledunia zu wiederholen.

Die Programme selbst sind unter GitHub abgelegt, können von da heruntergeladen und in der Arduino IDE ausgeführt werden. Hier sind die Benchmark-Ergebnisse im Vergleich zu verschiedenen klassischen Arduinos:

Board Arduino Uno Arduino M0 Arduino Due Ledunia
CPU ATmega328 ATSAMD21G18
(Cortex-M0+)
AT91SAM3X8E
(Cortex-M3)
ESP8266EX
Clock 16 MHz 48 MHz 84 MHz 80 MHz
Runtime 18267 ms 5180 ms 3451 ms 2189 ms
IO-  Periode 11,60 us 3.24 us 4,32 us 5 us
I/O-Frequenz 86,21 kHz 308,6 kHz 203,3 kHz 200 kHz

Die Leistungsmerkmale der ESP8266-basierten Arduinos können sich sehen lassen und bilden damit eine sehr gute Ergänzung der Arduino-Familie.

Hello World für Ledunia

Ledunia bezeichnet ein leistungsfähiges IoT Entwicklungsboard für das IoT auf Basis des bekannten ESP8266 Mikrocontrollers.

Die Installation in der Arduino IDE ist auf der Ledunia Website im Detail beschrieben. Hier ist ein einfaches Programmbeispiel im „Hello World“-Stil gezeigt, welches die erfolgreiche Inbetriebnahme zeigt.

Der deutlich grössere Speicher im Vergleich zum NodeMCU ist aus den Screenshots ersichtlich.

// Uncomment your board

#define ESP8266_LED 5 // for Ledunia
#define NodeMCU_LED D0 // for NodeMCU

#define LED ESP8266_LED // adapt it

ADC_MODE(ADC_VCC);

byte count = 0;

void setup() 
{
  pinMode(LED, OUTPUT);
  Serial.begin(115200);
  delay(4000); // waiting to start the monitor
  Serial.print("Hi there, here is "); 
  Serial.println("Ledunia"); // for Ledunia
//  Serial.println("NodeMCU"); // for NodeMCU
  Serial.print("ESP8266 Chip ID: ");
  Serial.println(ESP.getChipId());
  Serial.print("Flash Chip ID: ");
  Serial.println(ESP.getFlashChipId());
  Serial.print("Flash available [KB]: ");
  Serial.println(ESP.getFlashChipSize()/1024);
  Serial.print("Flash Chip Size [KB]: ");
  Serial.println(ESP.getFlashChipRealSize()/1024);
  Serial.print("Flash frequency [MHz]: ");
  Serial.println(ESP.getFlashChipSpeed()/1000000);
  Serial.print("Free Heap [KB]: ");
  Serial.println(ESP.getFreeHeap()/1024);
  Serial.print("VCC [mV]: ");
  Serial.println(ESP.getVcc());
}

void loop() 
{
  Serial.print(".");
  count++;
  if (count == 25)
  {
    Serial.println();
    count=0;
  }
  digitalWrite(LED, HIGH);
  delay(980);
  digitalWrite(LED, LOW);
  delay(20);
}

LeduniaTest

NodeMCU

Interesse geweckt?

Arduino for the Cloud

This eBook describes the Arduino Yún configured for cloud applications.

Due to the combination of microcontroller and Linux device you can separate effectively real-time tasks from tasks that need network access.

Further explanations to Arduino Yún and the Arduino Yún shield as an addon for a conventional Arduino can be found in my book, Arduino for the Cloud.

Have fun with Arduino Yún!

Ranging mit radino32 DW1000

Der Decawave DW1000 Baustein ist ein IEEE802.15.4-2011 konformer Ultra-Wideband (UWB) Transceiver und kann zur Positionsbestimmung im 2-Wege-Ranging betrieben werden und bietet dabei eine Genauigkeit von 10cm.

Das radino32 DW1000 kombiniert einen STM32L151 Mikrocontroller (Cortex-M3 Core) von STMicroelectronics mit dem DW1000 Funkchip von Decawave zum kompakten radino Formfaktor und kann damit als ein Baustein in einem komplexeren Real-Time Location System (RTLS) dienen.

Der Hersteller In-Circuit bietet eine freie Arduino-Bibliothek für die radino Funkmodule an, welche USB-Treiber, Bootloader und zahlreiche Beispiel-Sketches enthält.

Links zu weiteren Herstellerinformationen:

DW1000 Datasheet DW1000 User Manual

radino32 DW1000 für Ranging und RTLS, Ultra Wideband (UWB), IEEE802.15.4-2011 compliant, 3.5-6.5GHz

 

 

 

CONTROLLINO – Arduino im industriellen Einsatz

Arduino ist seit vielen Jahren über die Maker-Szene hinaus als Prototyping-Plattform bekant. Sowohl die aus einem Mikrocontroller-Board bestehende Hardware als auch die Arduino-Entwicklungsumgebung (IDE) sind Open Source. Prototyping-Plattformen sind aber nicht ohne weiteres für den industriellen Einsatz geeignet.

Mit CONTROLLINO stehen unterschiedlich ausgestattete Kleinsteuerungen auf Arduino-Basis zur Verfügung, die den industriellen Einsatz nicht scheuen brauchen. Für den industriellen Einsatz besonders wichtig sind die implementierten Schutzmaßnahmen gegen Kurzschluss, Überlast und elektrostatische Entladung und nicht zuletzt die spezifizierten Umgebungsbedingungen.

Zur Arbeit mit dem CONTROLLINO habe ich mir eine Spielwiese eingerichtet, die passend zur Bauform des CONTROLLINO mit Hutschienen-Komponenten arbeitet.

tafel

Über den Ethernet-Anschluss ist der CONTROLLINO mit dem Internet verbunden, während über den USB-Anschluss die Verbindung zur Arduino IDE (Programm-Download, Monitoring) vorgenommen wird.

Im Februar 2017 wird der CONTROLLINO in der Zeitschrift Design & Elektronik vorgestellt. Programmbeispiele sind auf Github zu finden.

UDOO NEO

udoo_neo_frontUDOO NEO ist ein All-in-One Low-Cost-Computer mit einem Freescale ™ i.MX 6SoloX Prozessor für Android und Linux.

Im UDOO NEO Prozessor sind zwei unterschiedliche CPUs eingebettet – ein mit 1 GHz getakteter ARM Cortex-A9 und ein ARM Cortex-M4-Co-Prozessor, der auf 200 MHz laufen kann.

Während auf dem Cortex-A9 sowohl Android Lollipop als auch UDOObuntu 2, eine spezielle Ubuntu-basierte Linux-Distribution, laufen kann, ermöglicht der Cortex-M4 den einfachen Zugang zu einer Arduino™ -Umgebung. Die Buchsenleisten ermöglichen das Kontaktieren von Arduino-Shields und beliebiger I/O.

Weiterlesen