Schlagwort-Archive: Oxocard

Oxocard Connect

In meinem Blogbeitrag Vermittlung digitaler Inhalte in der Schule hatte ich die das Informatikinteresse an den Schulen fördernden Mikrocontroller BBC micro:bit, Calliope mini, und Oxocard betrachtet.

Dieser Bereich ist nach wie vor in Bewegung, stellt doch die Digitalisierung in allen Lebensbereichen eine grosse Herausforderung dar.

Mit der Oxocard Mini Serie stellt die Schweizer Oxon AG Computerboards zur Verfügung, die das Eintauchen in Computergrafik und ihre zugrunde liegenden Algorithmen oder Spiele und Animationen mit ihren Quelltexten ermöglichen.

OxoCard (Mini) Science ist eine programmierbare Multisensorplatine, die mit Hilfe von sieben Sensoren die folgenden physikalischen Grössen erfasst: Licht/IR, Temperatur, Geräusche, Feuchte, Druck und flüchtige Kohlenstoffverbindungen (VoC, eCO2 und Ethanol). Auch hier steht der dokumentierte Quelltext zur Verfügung und eigene Experimente können gestartet werden.

Oxocard Science, Oxocard Galaxy & Oxocard Artwork

Das jüngste Kind der Oxocard-Familie ist Oxocard Connect – ein ebenfalls auf dem ESP32 aufbauendes und damit netzwerktaugliches Computermodul mit grafischem TFT-Display und einem Joystick für die Benutzer-Eingaben, welches durch seitlich einsteckbare Cartridges mit peripheren Komponenten, wie Sensoren etc., erweitert werden kann.

Oxocard Connect mit Air Cartridge

Die Programmierung kann wieder über den komfortablen Nanopy-Editor erfolgen. Zahlreiche Programmbeispiele und ausführliche Erläuterungen dienen der Einarbeitung und Auseinandersetzung mit diesem System. Zum näheren Kennenlernen möchte ich Sie auf den Beitrag von David Lee verweisen.

Ich möchte Oxocard Connect nicht mit Python programmieren, sondern diesen sehr ansprechend gestaltetem Controller mit der Arduino-IDE programmieren. Die zahlreichen Libraries ermöglichen die Erweiterung mit Sensoren und die Vernetzung sehr komfortabel. Mit dem Veroboard lassen sich Prototypen sehr einfach erstellen, bevor man mglw. eine anwendungsspezifische Cartridge erstellt.

Oxocard Connect Arduino Test

Für die Hardware-Konstellation habe ich ein Testprogramm erstellt, welches die folgenden Funktionen testet:

  • Ausgabe auf dem farbigen TFT-LCD mit 240 x 240 Pixel LH133T-IG01 mit ST7789VW LCD-Controller
  • Abfrage Joystick
  • LEDs über digitale IO
  • EEPROM über I2C-Bus

Auf der Cartridge stehen neben digitaler und analoger IO und I2C-Bus auch noch SPI zur Verfügung. Ausserdem kann die gesamte Schaltung auch extern mit 5V (VEXT) versorgt werden.

Der Einsatz eines so ansprechend gestalteten Controllers lässt schnell das oft vorhandene Drahtverhau mit seinen unsicheren Verbindungen vergessen.


Oxocard Connect Openweather Station

Oxocard Connect besitzt mit der vorhandenen Hardware alle Möglichkeiten, über das Internet auf Daten zuzugreifen und diese auf dem Display darzustellen.

Ich habe hier durch Abfrage der Wetterdaten von Openweathermap.org eine kleine Wetterstation als Anwendungsbeispiel erstellt.

Openweathermap.org stellt maximal 1000 Aufrufe pro Tag gratis zur Verfügung, weshalb hier der Abfragezyklus auf zwei Minuten eingestellt wurde. Werden die 1000 Aufrufe überschritten, dann kann ein blockierter Account die Folge sein.

Das Programm finden Sie auf GitHub unter https://github.com/ckuehnel/Arduino2023/tree/main/ESP32/Oxocard/Oxocard_OpenWeather


Oxocard Connect MQTT-Client

Simon Kemper beschreibt auf LinkedIn die Verbindung von Datacake und Slack zur Benachrichtigung bei kritischen Zuständen etc.

Unter Verwendung des TTN-internen MQTT-Servers bin ich einen anderen Weg gegangen.

Ich verwende Oxocard Connect als MQTT-Client und filtere nur die für das Monitoring erforderlichen Größen aus den Upload-Messages zur Anzeige auf dem Display.

Konkret überwache ich die Batteriekapazität eines solar-gepufferten SensorHubs von RAKwireless. Gerade jetzt in der dunklen Jahreszeit möchte ich den Ladezustand der Batterie überwachen, um die Nachladung tagsüber zu verifizieren.

Der SensorHub sendet die erfassten Umweltdaten zum TTS (CE) LNS, der diese an ein Datacake Dashboard zur Visualisierung weiterleitet. Sie finden dieses Dashboard über diesen Public Link.

Der Oxocard Connect MQTT-Client „subscribed“ die Upload-Messages des SensorHubs, filtert die Batteriekapazität aus der umfangreichen Upload-Message und bringt sie auf dem Display zur Anzeige. Die Aktualisierung des Displayinhalts erfolgt mit jeder neuen Upload-Message vom SensorHub.

Ein Screenshot des Consolen Outputs zeigt die empfangene Payload vor und nach der Filterung und die Extraktion der Daten. Auf dem Display wird aber nur die aktuelle Batteriekapazität angezeigt.

Consolen Output

2023-12-01/CK

Vermittlung digitaler Inhalte in der Schule

Schon heute setzen wir uns mit zunehmender Tendenz mit automatisierten Abläufen, Algorithmen und vernetzten Gegenständen im Alltag auseinander. Künstliche Intelligenz wird Prozesse unterstützen und möglicherweise auch irgendwann autonom übernehmen.

Auf diese Entwicklungen vorbereitet zu sein, um sie zu beherrschen, zu gestalten und weiter zu entwickeln bedarf es mehr als einen IT-Grundkurs im Gymnasium oder Studium. Wichtig ist es, die Chance zu haben, in diese Welt und das damit verbundene Denken hineinzuwachsen.

In einigen Ländern wurde das frühzeitig erkannt und durch entsprechende Initiativen gefördert. Die Idee ist, jedes Kind zu inspirieren, seine digitale Zukunft zu gestalten und die Maker-Bewegung in den Unterricht zu bringen.

Im Schweizer Lehrplan 21 wird der heutigen Lebenswelt von Kindern und Jugendlichen entsprochen, die „durchdrungen (ist) von traditionellen und digitalen Medien sowie von Werkzeugen und Geräten, die auf Informations- und Kommunikationstechnologien basieren und die durch ihre Omnipräsenz neue Handlungsmöglichkeiten und neue soziale Realitäten schaffen“ (https://v-fe.lehrplan.ch/index.php?code=e|10|2). Abgestimmt mit dem Lehrplan 21 steht mit der Oxocard ein mit WiFi ausgestatteter Computer zur Verfügung, der auch bereits über den Browser programmiert werden kann. Auch in Deutschland und Grossbritannien werden solche Aktivitäten durch Hard- und Software für den Einsatz in der Schule unterstützt.

„Unser Anspruch ist, dass jeder Schüler und jede Schülerin in der dritten Klasse in Deutschland so ein Ding in die Hände bekommt“, sagt Stephan Noller, einer der Gesellschafter von Calliope. „Es soll nicht irgendein Leuchtturmprojekt in Berlin-Wedding werden, sondern wir wollen in die Fläche – und zwar jedes Jahr von Neuem.“

Ob man mit dem Calliope mini die vielleicht größtmögliche Umwälzung des deutschen Schulsystems in der Hand hält, wie Patrick Beuth in der Zeit im Beitrag „Dieser Computer kann unser Schulsystem revolutionieren“(http://www.zeit.de/digital/internet/2016-10/calliope-mikrocontroller-grundschule-dritte-klasse) schreibt, kann ich nicht beurteilen.

So unterschiedlich die Angebote sind, eines haben sie gemeinsam: Sie werden von Menschen organisiert, die mit großer Begeisterung ihr Wissen rund um Programmierung und digitale Themen an Kinder und Jugendliche weitergeben. Bei den Machern um BBC micro:bit, Calliope mini und Oxocard ist diese Begeisterung zu spüren.

Dass solche Projekte, wie so oft, nicht widerstandsarm umsetzbar sind, zeigen Diskussionen wie sie im Interview „An Calliope scheiden sich die Geister“ (https://www.deutschlandfunk.de/minicomputer-im-klassenzimmer-an-calliope-scheiden-sich-die.680.de.html?dram:article_id=399302) aufgeworfen werden.

Ich möchte mich hier auf den technischen Bereich beschränken. Für ideologische Auseinandersetzungen sind andere besser geeignet.

Die folgende Tabelle zeigt eine Gegenüberstellung der technischen Merkmale der drei hier betrachteten Mikrocontrollerboards.

Mikrocontroller
Board
BBC micro:bitCalliope miniOxocard
HerkunftUKDCH
HauptmerkmaleNordic nRF52833, BLE, Radio
Motion Sensor (ST LSM303AGR)
5×5 LED Matrix Display (rot)
2 Taster
19 GPIO
Piezo-Lautsprecher
MEMS Mikrofon
USB Micro B Anschluss
(Programmierung und Stromversorgung)
JST Batterieanschluss (3.3V)
Temperatursensor (on-chip NRF52)
Nordic nRF51822, BLE, Radio
Motion Sensor (Bosch BMX055)
5×5 LED Matrix Display (rot)
DC Motortreiber (TI DRV8837)
Piezo-Lautsprecher
MEMS Mikrofon
Neopixel (WS2812b)
2 Taster
8-11 GPIOs, PWM, 4 x analog
UART + SPI + I2C
USB Micro B Anschluss
(Programmierung und Stromversorgung)
JST Batterieanschluss (3.3V)
2 Grove Stecker (I2C + Seriell/Analog)
Espressif ESP32, BLE, WiFi
Motion Sensor (ST LIS3DE)
8×8 Neopixel Matrix
Kopfhörerbuchse für 8bit-Audioausgabe (mono)
Mikrofon (PDM)
NeoPixel Data-Out
6 Taster
6 GPIOs
UART + SPI + I2C
USB Micro B Anschluss
(Programmierung und Stromversorgung)
LiPo-Akku
Anschluss für Grove I2C-Hub
Temperatursensor (on-chip LIS3DE)

Programmier-
umgebungen
MakeCode, MicroPython,
JavaScript
MakeCode, Swift,
abbozza! Calliope (basiert auf Blockly),
C/C++ (Segger), MicropPython
Blockly, Oxoscript,
Arduino (C/C++), MicroPython. 
BBC micro:bit, Calliope mini, Oxocard – im Vergleich

Wie aus den Hauptmerkmalen abzuleiten ist, stellen alle drei Boards eine vergleichbare Infrastruktur bereit. Auf markante Unterschiede will ich im Folgenden eingehen. Eine Betrachtung der Ausgangsversionen von BBC micro:bit und Calliope mini hatte ich in einer früheren Veröffentlichung (https://www.elektroniknet.de/embedded/hardware/mikrocontroller-nicht-nur-fuer-die-schule.150415.html) bereits vorgenommen.

Herausstechendes Merkmal beim BBC micro:bit ist seine an der Unterkante des Boards befindliche als Goldfinger bezeichnete Anschlussleiste. Hier können zahlreiche Erweiterungsboard direkt angeschlossen werden. Einen guten Überblick zu diesen Erweiterungen finden Sie unter https://shop.pimoroni.com/collections/micro-bit-uk.

BBC mirco:bit v2

Beim Calliope mini wollte man den Goldfinger nicht übernehmen, da wegen der viel zu eng liegenden Kontakte im Schuleinsatz mit ständigen Kurzschlüssen durch die Schüler gerechnet werden müsste. Es wurden auf dem Board Erweiterungen, wie RGB-LED (Neopixel) und Motortreiber (H-Brücke) u.a., vorgesehen. Zusätzlich stellen die beiden Grove-Connectoren einen I2C-Bus, einen UART-Anschluss sowie einen analogen Eingang zur Kontaktierung von Sensoren oder Aktoren des umfangreichen Grove-Systems zur Verfügung. Eine gute Übersicht zum Grove-System bietet ein Grove Wiki von Seeedstudio (https://wiki.seeedstudio.com/Grove_System/).

Calliope mini v2

Die Oxocard geht einen etwas anderen Weg. Die elektronischen Interna sind gut verpackt in einem Kartongehäuse. Durch den Einsatz eines ESP-32 steht neben BLE auch WiFi zur Verfügung, wodurch Internet-Konnektivität gegeben ist. Durch diese Option ist es möglich IoT-Projekte zu realisieren. Der LiPo-Akku sorgt dann für einen gewissen Zeitraum sogar für autonome Einsatzmöglichkeiten ohne externe Spannungsversorgung.

Nach außen hin stehen die sechs Taster und die 8×8 Neopixel Matrix für Experimente zur Verfügung. Durch die Verwendung der internen Sensoren kommt der Anwender erstmal vollkommen ohne elektrische Verbindungen nach außen aus.

Kommuniziere Meldungen zwischen Oxocards, hol dir Daten aus dem Internet oder stelle deine Karte als Sensor anderen zur Verfügung. All das ist ohne Erweiterungen möglich.

Oxocard mit Kartongehäuse

Für den Maker von Interesse sind natürlich die Erweiterungsmöglichkeiten. Ergänzend zum Lieferumfang der Oxocard ist der OXOCARD i2C-Hub-Erweiterungsport verfügbar.

Lieferumfang Oxocard

Der Oxocard I2C Hub ist ein kleiner Bausatz, um der Oxocard relativ einfach das Anschließen von beliebigen I2C-Grove- Komponenten zu ermöglichen. Mit diesem I2C-Hub können Sie die Oxocard mit zusätzlichen GROVE-kompatiblen Sensoren und Aktoren erweitern. Außerdem kann über eine Buchsenleiste der SPI-Port nach außen geführt werden.

SPI- und I2C-Bus an der Oxocard

Mit diesen Erweiterungsmöglichkeiten ist die Oxocard ein für den Schulbetrieb geeigneter, komplett ausgestatteter und erweiterbarer Mikrocontroller, der als einziger Internet-Zugriff aufweist.

Allen drei vorgestellten Boards gemeinsam ist neben der grafischen Programmierung in MakeCode resp. Blockly die Programmierung in MicroPython.

In meinem MicroPython Blog https://ckmicropython.wordpress.com sind MicroPython Programmbeispiele für die Oxocard zu finden.


2021-04-05/ck